Video Stream Analysis in Clouds: An Object Detection and Classification Framework for High Performance Video Analytics

نویسندگان

  • Ashiq Anjum
  • Tariq Abdullah
  • M Fahim Tariq
  • Yusuf Baltaci
  • Nikos Antonopoulos
چکیده

Object detection and classification are the basic tasks in video analytics and become the starting point for other complex applications. Traditional video analytics approaches are manual and time consuming. These are subjective due to the very involvement of human factor. We present a cloud based video analytics framework for scalable and robust analysis of video streams. The framework empowers an operator by automating the object detection and classification process from recorded video streams. An operator only specifies an analysis criteria and duration of video streams to analyse. The streams are then fetched from a cloud storage, decoded and analysed on the cloud. The framework executes compute intensive parts of the analysis to GPU powered servers in the cloud. Vehicle and face detection are presented as two case studies for evaluating the framework, with one month of data and a 15 node cloud. The framework reliably performed object detection and classification on the data, comprising of 21,600 video streams and 175 GB in size, in 6.52 hours. The GPU enabled deployment of the framework took 3 hours to perform analysis on the same number of video streams, thus making it at least twice as fast than the cloud deployment without GPUs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIDF: A Novel Framework for Accurate Surgical Instrument Detection in Laparoscopic Video Frames

Background and Objectives: Identification of surgical instruments in laparoscopic video images has several biomedical applications. While several methods have been proposed for accurate detection of surgical instruments, the accuracy of these methods is still challenged high complexity of the laparoscopic video images. This paper introduces a Surgical Instrument Detection Framework (SIDF) for a...

متن کامل

Compressed Domain Scene Change Detection Based on Transform Units Distribution in High Efficiency Video Coding Standard

Scene change detection plays an important role in a number of video applications, including video indexing, searching, browsing, semantic features extraction, and, in general, pre-processing and post-processing operations. Several scene change detection methods have been proposed in different coding standards. Most of them use fixed thresholds for the similarity metrics to determine if there wa...

متن کامل

Action Change Detection in Video Based on HOG

Background and Objectives: Action recognition, as the processes of labeling an unknown action of a query video, is a challenging problem, due to the event complexity, variations in imaging conditions, and intra- and inter-individual action-variability. A number of solutions proposed to solve action recognition problem. Many of these frameworks suppose that each video sequence includes only one ...

متن کامل

Application of Combined Local Object Based Features and Cluster Fusion for the Behaviors Recognition and Detection of Abnormal Behaviors

In this paper, we propose a novel framework for behaviors recognition and detection of certain types of abnormal behaviors, capable of achieving high detection rates on a variety of real-life scenes. The new proposed approach here is a combination of the location based methods and the object based ones. First, a novel approach is formulated to use optical flow and binary motion video as the loc...

متن کامل

Adaptive Spectral Separation Two Layer Coding with Error Concealment for Cell Loss Resilience

This paper addresses the issue of cell loss and its consequent effect on video quality in a packet video system, and examines possible compensative measures. In the system's enconder, adaptive spectral separation is used to develop a two-layer coding scheme comprising a high priority layer to carry essential video data and a low priority layer with data to enhance the video image. A two-step er...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016